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The dynamic stability of a completely free isotropic circular cylindrical shell
under a follower force is investigated. First order shear deformation is included and
the axial stress is assumed to be uniformly distributed through the thickness.
A "nite element model of the shell is formulated using a ring element in the
circumferential direction and a Lagrangian element in the longitudinal direction.
The dynamic stability is studied for various dimensionless lengths and thicknesses.
The numerical results for the shells are compared with those of a beam model
having equivalent dimensions. The analysis shows that the Rayleigh mode and the
Love mode have an e!ect on instability and that the shell structure can be analyzed
with a beam model within only a certain range of shell dimensions.
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1. INTRODUCTION

A free}free beam model or a free-edged rectangular plate model has been used to
study the dynamic stability of #exible aerospace structures and missiles. On the
other hand, although the cylindrical shell is one of the basic elements commonly
used in aerospace structures, the investigation of cylindrical shells under a follower
force is as yet unavailable. As a matter of fact, the rocket or missiles, which have
been researched using a beam model in many papers, are cylindrical shell structures
rather than beams.

For studies of a free}free beam under follower forces, there are many papers in
the literature. Beal [1] "rst investigated a free}free beam under a constant thrust
and a pulsating thrust using the Euler}Bernoulli beam theory. He considered the
e!ect of the control parameter and found two instability types, which were a #utter
type and a divergence type. Wu [2] studied the relation between the critical load
and the eigencurves using the "nite element method. Park and Mote [3]
investigated the e!ect of a concentrated mass on the critical load and the instability
type. Park [4] treated a beam model with various rotary inertia and shear
deformation parameters using element method.
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Several papers on the dynamic stability of plates under a follower force are also
available. A completely free plate subjected to a follower force was studied "rst by
Higuchi and Dowell [5, 6]. They classi"ed the plates into two categories which
were beam-like plates and rectangular plates. In these papers, the e!ect of damping
on stability was also researched. Kim and Park [7] treated the problem for various
locations and magnitudes of intermediate follower forces using the "nite element
method.

Studies on the stability of cylindrical shells have been carried out only for the
case of conservative loads. In addition, most of these works did not include the
free}free edge condition. Matsunaga [8] studied the free vibration of a thick
cylindrical shell subjected to axial stresses. He used a higher order shear
deformation theory and treated a simply supported edge condition. There are many
papers which treat the dynamic stability of cylindrical shells under a pulsating axial
force [9}11], but in these papers, only a conservative load was treated and the
movable edge conditions were not considered. There is work on the dynamic
stability of a shell under non-conservative follower force [12]. In addition
to free-edge condition, various boundary conditions were treated in that paper.
However it deals with a shallow shell rather than a completely cylindrical shell.

In this work, the dynamic stability of completely free isotropic cylindrical shells
under follower forces is studied using the "nite element method. Shear deformation
and rotary inertia are included in the potential energy and the kinetic energy. The
unperturbed stress distribution is assumed to be uniform through the thickness and
to be linear along the longitudinal direction. Due to the fact that the rigid-body
mode cannot be reproduced by using the Lagrangian element in the shell
co-ordinate, the trigonometric ring element in the circumferential direction and the
4-node Lagrangian element in the longitudinal direction are used. A free}free shell
has Rayleigh modes and Love modes as the two lowest modes when the number of
circumferential waves is equal to or greater than two [13]. Since the critical load is
related to the lowest eigenvalues, the Rayleigh mode and the Love mode may have
an e!ect on the stability of the free}free shells. The critical loads are calculated for
various lengths and thicknesses. A beam model equivalent to the shell dimensions'
is analyzed and compared with the results of a shell-model analysis.

2. FORMULATION

Figure 1 shows a cylindrical shell of length ¸, thickness h and radius R. The
x-axis is taken along a generator, the circumferential arc length subtends an angle h,
and the z-axis is directed radially outwards. A follower force with the magnitude
P is assumed to be uniformly distributed along an edge at x"0 and to be
tangential to the deformed generator (Figure 2).

Now, if we include only "rst- order shear deformation, the displacement "eld can
be written as [14]

u"u
0
(x, h)#z/(x, h),

v"v
0
(x, h )#zt(x,.h),

w"w
0
(x, h ), (1)



Figure 1. Co-ordinate system of a circular cylindrical shell.

Figure 2. Follower force in deformed geometry.
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where u
0
, v

0
and w

0
are the displacements of the middle surface, and / and t are the

changes of slope of the normal to the middle surface. In thin-shell theories / and
t are functions of w

0
and v

0
. But, / and t should be independent of order variables

to take the shear deformation e!ect into account. Using equation (1), we get the
kinetic energy as
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where o is the mass density of the shell material. The strain energy is written as
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The shear correction factor and the material properties are included in the matrix r.
In equation (4), we refer to reference [14].

An extended Hamilton's principle is applied to a shell subjected to a tangential
follower force as follows:

P
t2

t1

(d¹!d;#d=
f
) dt"0, (7)

where d=
f

is the virtual work of the follower force. Taking the acceleration of the
shell by the follower force into account, we can assume that the axial stress is
linearly distributed along the longitudinal direction [15]. In addition, assuming
that the axial stress is uniformly distributed in the thickness direction, d=

j
is

expressed as
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where P is the constant magnitude of a follower force per unit length. In the
expression of d=

f
, the work induced by v is excluded generally for plates [5], but, in

equation (8), the circumferential displacement v is included due to the fact that the
vibration of shells induces much displacement in the circumferential direction as
compared with the plate vibration. In addition, the torsional e!ect on stability can
be included by considering the term containing v. Though v is composed of v

0
and

zt, the term involving t is about in equation (8), due to the fact that zt is small
enough to be neglected in comparision with v

0
.

To solve the variational form, equation (7), we introduce the circumferential base
functions as [14]

u
0
"

=
+

m/0

; (x) cos(mh)e*u5 ,

v
0
"

=
+

m/0

< (x) sin(mh)e*u5,

w
0
"

=
+

m/0

= (x) cos(mh)e*u5 ,

/"

=
+

m/0

U (x) cos(mh)e*u5,

t"

=
+

m/0

((x) sin(mh)e*u5,

m"0, 1, 2,2, (9)

With the above shape functions for the circumferential direction, the 4-node
Lagrangian element can be used for the longitudinal direction. The shape functions
in equations (6) are identical with the mode shapes of the circumferential direction
for the isotropic case.

Now, examining equation (8), we can infer that d=
f

has the orthogonal property
about the circumferential base functions (9). With di!erent m1s. In other words, the
modes with di!erent circumferential wave numbers can be decoupled. Using this
property, the stability analysis can be performed for each circumferential wave
number respectively. As regards e$ciency, one can save much time by virtue of the
smaller matrix size.

Using the "nite element method with the above base functions, we obtain
eigenvalue equations as follows:

det[!u2M(m)#K(m)#PS(m)]"0, m"0, 1, 2, 3,2. (10)

The superscript m indicates the circumferential wave number.
By introducing non-dimensional parameters such as x/R, z/R, ¸/R and h/R, the

following parameters are induced:

b"P
(1!l2)

Eh
, (11)

j2"u2
(1!l2)oR2

E
. (12)
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Then, equations (10) can be written as

det[!j2M(m)#K(m)#bS(m)]"0, (13)

where M, K and S are non-dimensional matrices.
The stability of the cylindrical shell can be examined by checking the sign and the

imaginary part of j2. The coalescence of two eigenvalues of equation (13) indicates
a #utter type instability and eigenvalues become complex numbers. If an eigenvalue
of equation (13) reduces to zero, a divergence type instability occurs.

3. EQUIVALENT BEAM

For a Timoshenko beam model, the non-dimensional parameters are the shear
deformation parameter iGA¸2/EI and the rotary inertia parameter I/A¸2, where
iGA is the shear sti!ness and EI is the bending rigidity. In constructing the
equivalent beam model, the material properties must be identical to the considered
shell properties, and the shear correction factor i can be determined by the shape of
the shell cross section as [16]

i"
6(1#l)(1#k)2

(7#6l)(1#k)2#(20#12l)k2
, (14)

where

k"
R!h/2
R#h/2

.

For a circular cross-section, A and I can be written as

A"2nRh, (15)

I"nR3h, (16)

where R and h are the radius and the thickness of the shell respectively. Then
assuming that the lengths of the shell and the beam are the same, I/A¸2 can be
determined as

I
A¸2

"

R2

2¸2
. (17)

Considering that the follower force of the beam is assumed to be a concentrated
load and that P in Figure 2 is a distributed load, the equivalent non-dimensional
follower force can be written by means of the non-dimensional follower force of the
beam as

b
eq
"b

b

(1!l)2
2

R2

¸2
, (18)

where b
b
is the non-dimensional follower force of the beam. Using these parameters,

the results of a beam model can be compared with those of a shell model.
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Figure 3. Convergence of non-dimensional natural frequency (h/R"0)002, m"2). Mode number
in longitudinal direction & ¸/R, }}}L modeNo.: 1. ¸/R"61)5; **]# mode No.: 5. ¸/R"224.

4. NUMERICAL RESULTS

The ratio z/R was not neglected in the integration of strain energy and kinetic
energy expressions involving (1#z/R). The number of elements in the longitudinal
direction is based on the convergence of natural frequency. Figure 3 shows the
convergence of non-dimensional natural frequencies. The analytic solution of these
cases is 4.00E-6 in reference [13], in which the solution is based on FluK gge's shell
theory. In Figure 3, use of 10 elements can reduce the computational error below
1% in both cases. Therefore, in computing the critical load, 20 elements for the
longitudinal direction were used and enough to get accurate results.

Eight circumferential wave numbers (0, 1, 2,2, 7) were considered for the
stability check and the lowest critical loads were found below m"7 for the
considered shell dimensions. The shear correction factor and Poisson's ratio were
assumed to be n2/12 and 0)3 respectively.

The critical forces for the beam model were obtained using the "nite element
method and compared with those of Reference [4]. They agreed well with each
other, and so only the computed results will be shown in the "gures.

On the basis of the numerical results showing two clearly di!erent tendencies, the
cylindrical shells of the considered dimensions could be classi"ed into two kinds,
which are long and short shells.

4.1. LONG SHELL (L/R*20)

Firstly, we must de"ne and examine the mode shapes which induce various types
of instability. The modes of a free}free cylindrical shell can be grouped by the



Figure 4. Shapes of various modes. (a) First bending and second bending modes (m"1). (b)
Rayleigh, Love and "rst bending modes (m"2).
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number of circumferential waves m. The case m"0 is not examined, because the
modes with m"0 do not induce critical load. The mode shapes for m"1 are
beam-like modes as presented in Figure 4(a). In this work, those modes are called
"rst bending mode, second bending mode and so forth by the number of extrema in
the longitudinal direction. If the number of circumferential waves m is equal to or
greater than two, the free}free cylindrical shell has two sets of modes which have
a linear or constant axial deformation. The "rst set, analyzed by Rayleigh, does not
vary axially, and the second set, analyzed by Love, has a linear variation (reference
[13]). But, the exact mode shapes have a small curvature in the longitudinal
direction as shown in Figure 4(b). Except for the two modes, the other modes have



Figure 5. Eigenvalue curves for typical instability types. (a) ¸/R"20, h/R"0)1, m"2. (b)
¸/R"40, h/R"0)1, m"2. (c) ¸/R"80, h/R"0)13, m"1.
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much bending in the longitudinal direction and are called the "rst bending mode,
second bending mode and so on like the modes of m"1.

Figure 5 shows the typical instability types of free}free cylindrical shells under
a follower force. In most cases, these kinds of #utter instability determine
the critical load. Although the divergence instability exists, the #utter instability
occurs under a lower follower force. Figures 5(a) and (b) demonstrate that the
Love mode and the Rayleigh mode play an important role in the stability of
shells. If the circumferential wave number is equal to or higher than two,
those types of instability take place. Due to the fact that the modes with
m"1 are beam-like modes, a beam-like instability can occur in shells as shown in
Figure 5(c).
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In Figures 5(a) and (b), the tendencies of eigenvalue curves are similar to
each other, but the two modes including a #utter instability are the Love mode
and the "rst bending mode in Figure 5(a) are the Rayleigh mode and the
Love mode in Figure 5(b). Examining the imaginary parts of eigenvalues in
Figure 5(b), one can see that the coalescence of the Rayleigh mode and the Love
mode induce a temporary weak #utter from the fact that the imaginary parts of the
complex eigenvalues remain small until the "rst bending mode eigenvalue
approaches.

Table 1 shows the circumferential wave numbers in which an instability can be
found under the lowest follower force among all the circumferential wave numbers.
We can infer that the circumferential wave number decreases as the thickness and
the length of a shell increase. The coalescence of the Rayleigh mode and the Love
mode does not occur in the case of very long shell. In addition, the circumferential
wave number showing the "rst instability reduces only to one.

Figure 6 shows the critical values versus thickness ratio for various lengths of
shells. It can be seen that the critical load increases as the thickness ratio increases.
There are several points on each line where the slope decreases as the thickness
ratio increases. At these points, the circumferential wave number reduces to a lower
TABLE 1

Instabililty type and circumferential wave number determining the critical load

¸/R"20 ¸/R"40 ¸/R"60 ¸/R"80 ¸/R"100
h/R m Class m Class m Class m Class m Class

0)01 5 L#1st 4 L#1st 3 L#1st 3 L#1st 3 L#1st
0)02 4 R#L 3 L#1st 3 L#1st 3 L#1st 2 L#1st
0)03 3 R#L 3 L#1st 2 L#1st 2 L#1st 2 L#1st
0)04 3 R#L 3 L#1st 2 L#1st 2 L#1st 2 L#1st
0)05 2 R#L 2 L#1st 2 L#1st 2 L#1st 2 L#1st
0)06 2 R#L 2 L#1st 2 L#1st 2 L#1st 2 L#1st
0)07 2 R#L 2 L#1st 2 L#1st 2 L#1st 2 L#1st
0)08 2 R#L 2 L#1st 2 L#1st 2 L#1st 2 L#1st
0)09 2 R#L 2 L#1st 2 L#1st 2 L#1st 2 L#1st
0)1 2 R#L 2 L#1st 2 L#1st 2 L#1st 2 L#1st
0)11 2 R#L 2 L#1st 2 L#1st 2 L#1st 1 1st#2nd
0)12 2 R#L 2 L#1st 2 L#1st 2 L#1st 1 1st#2nd
0)13 2 R#L 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd
0)14 2 R#L 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd
0)15 2 R#L 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd
0)16 2 R#L 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd
0)17 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd 1 1st#2nd
0)18 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd 1 1st#2nd
0)19 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd 1 1st#2nd
0)2 2 L#1st 2 L#1st 1 1st#2nd 1 1st#2nd 1 1st#2nd

R#L: Coalescence of Rayleigh mode and Love mode.
L#1st: Coalescence of Love mode and "rst bending mode.
1st#2nd: Coalescence of "rst bending mode and second bending mode.



Figure 6. Critical load for various lengths of the shell. ¸/R:*r* 20;*d* 40;*j* 60;*m* 80;
*#* 100.
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value as listed in Table 1 or the #utter type changes to another one among the
instability types in Figure 4. One can see that there exist some ranges along the
horizontal axis where the critical load does not change with the increase of
thickness ratio. These ranges are located in the region of large thickness ratios and
enlarge as the length of the shell increases. Comparing the results of Table 1, it is
seen that the #utter instability in Figure 5(c) occurs and the circumferential wave
number of the modes inducing instability is one in that range. In other words, the
shell behaves like a beam under a follower force in those ranges. Examining
equations (14), (17) and (18), one can see that the critical load of an equivalent beam
model depends on the thickness ratio only by the shear correction factor i. For the
range of thickness ratio considered in this work, i, has an almost constant value
(0.53}0.57) and therefore the thickness ratio of the shell has little e!ect on the
critical load of the equivalent beam. Therefore, it is probable that the critical load in
those ranges does not vary as the thickness ratio increases. But, the fact that the
critical load is invariable in those ranges does not mean that the dimensional
critical load remains constant though the thickness of the shell increases. For
equation (11), we can infer that the dimensional critical load increases linearly in
those ranges, as the thickness of the shell increases with the other dimensions of the
shell constant.

Figures 7(a) and (b) show eigenvalue curves of the various thickness ratios. In
case of m"2, as the thickness ratio increases, the eigenvalue curves move
considerably in the vertical direction, with the increase of the critical load



Figure 7. Eigenvalue curves for various thickness ratios. (a) ¸/R"60, m"2. h/R: ** 0)06 (left
vertical axis); - - - - 0)07 (right vertical axis); (b)¸/R"60, m"1. h/R:** 0)19 (left vertical axis); - - - -
0)20 (right vertical axis).

Figure 8. Critical load of shell and equivalent beam. ** shell; W beam.
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(Figure 7(a)). In Figure 7(b), two sets of the curves are almost identical and show
the same critical load. These phenomena correspond to the above statements about
Figure 6.

In Figure 8, we can compare the results of the equivalent beam model with the
criticle load of the beam-like #utter (m"1). From the explanation about s in the
above paragraph, the shear correction factor can be assumed to be constant while
computing the critical load of the beam model. The critical loads for various



Figure 9. Eigenvalue curves for various length ratios. (a) h/R"0)1, m"2. ¸/R: - - - - 40; ** 30;
} } 20. (b) h/R"0)2, m"1. ¸/R: - - - - 60; ** 70; } } 60.

Figure 10. Region for each circumferential wave number determining critical load. m sampled
data points;**"tted boundary. (a) m"1 (beam-like #utter) (b) m"2, (c) m"3, (d) m"4 or higher.
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thickness ratios merge as the length of the shell increases. The merging of the
critical loads is due to the fact that there exist some ranges where the critical load
does not change even though the thickness ratio increases in Figure 6. It can be
seen that the merged critical loads of shell coincide well with those of the equivalent
beams in Figure 8. This means that a shell under a follower force might be analyzed
by a beam model in the ranges of thickness and length where the beam-like modes
induce the #utter instability.



Figure 11. Critical load of short shells. ¸/R: *d* 15; *r* 20.
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The eigenvalue curves of various length ratios are presented in Figure 9. As the
length ratio decreases, the critical loads increase without much translation of the
eigencurves in the vertical direction. In Figure 9(a), one can see that the eigenvalues
of the "rst bending mode increase most rapidly as the length ratio decreases. With
this procedure, the di!erence between the eigencurves of the Rayleigh and Love
modes become much smaller than that of the Love and "rst bending modes, and the
coalescence of the Rayleigh and Love modes takes place as listed in Table 1.

Figure 10 shows the boundaries where the circumferential mode number
determining the critical load changes. Only the shell belonging to region (a) can be
analyzed using a beam model. One can see that the second circumferential modes
are the critical modes in a wide range of thickness and length.

4.2. SHORT SHELL (¸/R(20)

For short shells, there exist instability types di!erent from those of Figure 5. In
Figure 11, it can be seen that the critical load of the shorter shell is lower than that
of the longer shell for some range of thickness ratio. In the case of ¸/R"15, the
instability types presented in Figure 5 occur for the thin shells. But an instability of
a di!erent type takes place above the thickness ratio of the point (a), where the
higher modes of m"1 become unstable. Figure 12 shows that the ninth mode and
the tenth mode having almost the same free-vibration eigenvalues become unstable.

Now, we must investigate the possibility of this type of instability in practical
structures. One of the two modes having almost the same eigenvalues is the shear



Figure 12. Eigenvalue curve for short shell (¸/R"15, h/R"0)12, m"1).
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mode as explained for a Timoshenko beam theory in reference [17]. In other words,
those two modes have the same circumferential and axial wave number. If we
examine the mode shapes of the ninth and the tenth modes in Figure 12, we may see
that one of the modes has much transverse shear deformation. Due to the fact that
the "rst order shear deformation theory can neither estimate the eigenvalues nor
the mode shapes of the higher modes possessing much shear deformation, we
cannot be sure that the higher mode instability occurs.

5. CONCLUDING REMARKS

A competely free circular cylindrical shell subjected to a follower force was
investigated using a "nite element method. The cylindrical shell can be analyzed by
a beam model only in the case of thick and long shells. In these cases, the unstable
modes are the "rst and second bending modes for which the circumferential wave
number is one. These modes are similar to those of beams and the critical loads
agree well with the results of the beam model. If the thickness and the length of the
shells decrease, the critical conditions occur in the Rayleigh mode, the Love mode
and the "rst bending mode for which the circumferential wave numbers are higher
than one. In this case, a beam model cannot be applied to the shells. This means
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that missile or rocket structures should be analyzed by a more exact model like
shells rather than a beam model because the circumferential wave number of the
unstable modes is not always one.

The results for short shells (¸/R(20) pose a problem in the dynamic stability
analysis of shells. Due to the fact that the higher modes become unstable, the mode
shapes and the eigenvalues of the unstable modes may have much numerical error.
Therefore, the critical load is not exact, either. In addition to this problem , other
problems are present in shell modelling for missile or rocket structures. Because the
practical shell structures for missiles or rockets may have many sti!ening elements,
the Rayleigh mode or the Love mode may be absent. If so, the instability type may
be altered into another one and the critical load may change very much. However,
if the structure has an axisymmetric property like a cylindrical shell, the stability
analysis can be performed by manipulations of the small matrix as was done in this
paper using orthogonality.
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